Extending Iterative Protein Redesign and Optimization (IPRO) in protein library design for ligand specificity.
نویسندگان
چکیده
In this article we extend the Iterative Protein Redesign and Optimization (IPRO) framework for the design of protein libraries with targeted ligand specificity. Mutations that minimize the binding energy with the desired ligand are identified. At the same time explicit constraints are introduced that maintain the binding energy for all decoy ligands above a threshold necessary for successful binding. The proposed framework is demonstrated by computationally altering the effector binding specificity of the bacterial transcriptional regulatory protein AraC, belonging to the AraC/XylS family of transcriptional regulators for different unnatural ligands. The obtained results demonstrate the importance of systematically suppressing the binding energy for competing ligands. Pinpointing a small set of mutations within the binding pocket greatly improves the difference in binding energies between targeted and decoy ligands, even when they are very similar.
منابع مشابه
IPRO: an iterative computational protein library redesign and optimization procedure.
A number of computational approaches have been developed to reengineer promising chimeric proteins one at a time through targeted point mutations. In this article, we introduce the computational procedure IPRO (iterative protein redesign and optimization procedure) for the redesign of an entire combinatorial protein library in one step using energy-based scoring functions. IPRO relies on identi...
متن کاملComputational design of Candida boidinii xylose reductase for altered cofactor specificity.
In this study we introduce a computationally-driven enzyme redesign workflow for altering cofactor specificity from NADPH to NADH. By compiling and comparing data from previous studies involving cofactor switching mutations, we show that their effect cannot be explained as straightforward changes in volume, hydrophobicity, charge, or BLOSUM62 scores of the residues populating the cofactor bindi...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملStructure-Based Redesign of the Binding Specificity of Anti-Apoptotic Bcl-x[subscript L] Citation
Many native proteins are multi-specific and interact with numerous partners, which can confound analysis of their functions. Protein design provides a potential route to generating synthetic variants of native proteins with more selective binding profiles. Re-designed proteins could be used as research tools, diagnostics or therapeutics. In this work, we used a library screening approach to re-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 92 6 شماره
صفحات -
تاریخ انتشار 2007